Use of the Common Marmoset to Study Burkholderia mallei Infection
نویسندگان
چکیده
Burkholderia mallei is a host-adapted bacterium that does not persist outside of its equine reservoir. The organism causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by B. mallei typically occurs via the respiratory or percutaneous route, and the most common manifestations are life-threatening pneumonia and bacteremia. Glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. There is no vaccine to protect against B. mallei and there is concern regarding its use as a biothreat agent. Thus, experiments were performed to establish a non-human primate model of intranasal infection to study the organism and develop countermeasures. Groups of marmosets (Callithrix jacchus) were inoculated intranasally with B. mallei strain ATCC 23344 and monitored for clinical signs of illness for up to 13 days. We discovered that 83% of marmosets inoculated with doses of 2.5 X 10(4) to 2.5 X 10(5) bacteria developed acute lethal infection within 3-4 days. Signs of disease were severe and included lethargy, inappetence, conjunctivitis, mucopurulent and hemorrhagic nasal discharges, and increased respiratory effort with abdominal lifts. Burkholderia mallei was cultured from the lungs, spleen and liver of these animals, and pathologic examination of tissues revealed lesions characteristic of glanders. Challenge experiments also revealed that 91% of animals infected with doses ranging from 25 to 2.5 X 10(3) bacteria exhibited mild non-specific signs of illness and were culture negative. One marmoset inoculated with 2.5 X 10(3) organisms developed moderate signs of disease and reached humane end-points 8 days post-infection. The liver and spleen of this animal were colonized with the agent and pathological analysis of tissues showed nasal, splenic and hepatic lesions. Taken together, these data indicate that the marmoset is a suitable model to study respiratory infection by B. mallei.
منابع مشابه
A comparison of virulence of intraperitoneal infection of Burkholderia mallei strains in guinea-pigs
Male guinea pigs show high susceptibility to Burkholderia mallei and have been used as animal models in glanders studies. The purpose of our study was to elucidate glanders comparative pathogenesis in guinea pigs. We present here the histological changes and bacterial isolation that develop over time in guinea pigs inoculated intraperitoneally (IP) with two strain of B. mallei. Ten male guinea ...
متن کاملUse of a Safe, Reproducible, and Rapid Aerosol Delivery Method to Study Infection by Burkholderia pseudomallei and Burkholderia mallei in Mice
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these ...
متن کاملMonoclonal antibodies passively protect BALB/c mice against Burkholderia mallei aerosol challenge.
Glanders is a debilitating disease with no vaccine available. Murine monoclonal antibodies were produced against Burkholderia mallei, the etiologic agent of glanders, and were shown to be effective in passively protecting mice against a lethal aerosol challenge. The antibodies appeared to target lipopolysaccharide. Humoral antibodies may be important for immune protection against B. mallei infe...
متن کاملPolysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.
A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.
متن کاملThe animal pathogen-like type III secretion system is required for the intracellular survival of Burkholderia mallei within J774.2 macrophages.
Burkholderia mallei is a highly infectious gram-negative pathogen and is the causative agent of human and animal glanders. By generating polar mutations (disruption of bsaQ and bsaZ) in the B. mallei ATCC 23344 animal pathogen-like type III secretion system (TTS), we demonstrate that this bacterial protein delivery system is required for intracellular growth of B. mallei in J774.2 cells, format...
متن کامل